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SECTION I

EFFECT OF A SPACE/TIME VARIANT CHANNEL ON ADAPTIVE ARRAY PERFORMANCE:

SPATIAL DECORRELATION EFFECTS

This document is a topical report under Contract DNAUU1-82-C-0273
covering the period June 21, 1982 to March 15, 1983. The subject matter con-
cerns the effect of a space/time variant channel on the ability of an adaptive
array to null jammers. Attention is concentrated on the effect of spatial

decorrelation between antenna elements (the elements themselves are assumed

small enough not to be affected by spatial decorrelation).
While other adaptive array types are considered, more analysis and
evaluation is carried out for the sidelobe canceller (SLC) configuration., For

detailed performance evaluation a Gaussian spatial correlation function and

complex Gaussian statistics are assumed for channel fluctuations. These
assumptions are appropriate to transionospheric propagation with saturated

scintillation.

1.1 CONTENTS
The subsequent report is divided into seven sections and one appen-

dix. Section 2 presents the configurations for three basic types of adaptive

arrays: the fully adaptive array, the multiple beam array, and the sidelobe i;
canceller,

Section 3 presents the equations defining the weights for optimum )
steady state performance and the corresponding mean squared error, signal-to- H
noise ratio, and antenna pattern, The space/time channel averages and statis-

tics needed to calculate performance are presented.
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Section 4 presents detailed calculations of optimum performance for

the case of a two-element adaptive array. As in the other calculations in
this report, only narrowband signals are assumed so that no degradations due
to frequency-selective distortion are calculated., This was done to place em-
phasis on the impact of spatial selectivity (i.e., decorrelatio~) or direc-
tion-of-arrival fluctuations upon performance. The space/time variant channel
model without frequency selectivity consists of a collection of channeis from
each transmitter to each antenna element with each such channel modeled as a
complex time-variant multiplier. Three types of analyses are conducted: non-
fading, fading with array time constants short enough to adapt to fading,
fading with array time constants too slow to adapt to fading. A two-element
half wavelength-spaced array is considered and response to a single jammer
evaluated.

Section 5 in large part presents detailed calculations for the SLC
(sidelobe canceller) array that parallel those in Section 4 for the fully
adaptive array. In this case, however, a linear array with a single antenna
and two auxiliary antennas is considered together with the response to two
Jammers, At the end of this section some analytical results on processing
gain against a single jammer at large J/N (jammer-to-noise) ratios are ob-
tained for a linear array of M SLC auxiliary antennas. By processing gain we
mean the ratio of output SNR with the array functioning to achieve optimum
performance to output SNR with no adaptive array,

Section 6 carries out further analysis of SLC processing gain for a
single jammer, a linear array of M auxiliary antennas, and array time con-

stants long compared to the fading time constants. With the aid of an appro-

priate spatial correlation function, formulae are obtained for processing

e




gain, Plots are presented of processing gain as a function of the decorre-

lation between fading on adjacent antennas.

Section 7 presents the basic analysis for the more general case of
a three-dimensional grid of SLC auxiliary antennas and multiple jammers, A
computer program was written to calculate processing gain for this general
case but it has not been exercised to any extent yet.

Section 8 develops expressions for the error rate of modems used in
conjunction with an SLC (sidelobe canceller) adaptive array. It is assumed
that the propagation medium produces decorrelations in time, space, and fre-
quency, on the transmitted signals. However, it is assumed- that the adaptive
array time constants are too slow to adapt to the fading and that the signal
bandwidth 1is narrow enough to avoid significant frequency-selective fading.
Thus the performance degradation suffered by the array is caused by spatial
selectivity and nonadaptation to the fading., The analysis is concerned with

the error rate performance of a digital modem connected to the output after

the SLC has attempted to cancel the jamming signals. As in the case of the

adaptive array, two cases may be considered: the modem time constants may or

may not allow adaptation to the fading. In this section we consider the case

of a fading adaptive modem. In order to obtain adequate error rate perform-

ance it is necessary to employ coding, interleaving, and forward error cor-
rection techniques. The raw error rates computed here may be used to evaluate
the improvement offered by interleaved hard-decision error correction coding
techniques. Some numerical results on error rate are obtained showing the

impact of spatial decorrelation.

et th i
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1.2 CONCLUSIONS

In the case of a fading adaptive array, it is possible in theory *
for the antenna pattern nulls to become sharper with increasing jammers' power
until the jammers are completely nulled and the output SNR is independent of
jammer levels. This same behavior exists for the non-fading non-dispersive
channel. However, there are degradations over the non-fading case even with a
fading adaptive array. Aside from fading per se, which produces large modem
performance degradations over the non-fading case, there is degradation due (o
the fact that the fluctuating angle of arrival of the signal and the jammers
may cause jammers to apparently come close enough to the signal direction to
prevent nulling at any reasonable jammer level.

In the case of the fading non-adaptive array, the situation is
quite different. For the fully adaptive array it is shown that as the fading
becomes severe enough so that the mean field disappears, the array "shuts
down", i.e., the adaptive weights go to zero. With any non-zero mean field
the output SNR at large jammer levels becomes proportional to the input J/S
ratio, indicating that a perfect null cannot be formed at large jammer powers
as in the fading adaptive case. The sidelobe canceller does not shut down as
the mean field goes to zero. However, the output SNR is proportional to the
J/S ratios at large jammer levels also. If the decorrelation between auxil-
iary antennas is sufficiently small and if sufficient number of antennas exist
in relation to the number of jammers, the SLC array can provide adequate proc-
essing gain against the jammers. The reader is referred to Figures 6.2 and

8.2 for calculations of the impact of spatial decorrelation on processing gain

F—

Practical limitations prevent reaching complete jammer cancellation. We do
not discuss these limitations here since our emphasis is on determining the
impact of spatial decorrelation,




and error rate for the case of a single jammer. With only one auxiliary
antenna the impact of spatial decorrelation becomes significant with small
amounts of decorrelation. Thus from Figure 8.2 it may be determined that when
the correlation coefficient between adjacent auxiliary antennas drops from
1.0, perfect correlation, to 0.9985, the PSK modem analyzed suffers approxi-
mately a 3 dB degradation in SNR performance, However, as the results of
Figure 6.2 indicate, the addition of another auxiliary antenna will cause a
very large improvement in processing gain and remove the SNR degradation for
the same amount of decorrelation.

While a computer praogram has been developed to handle quite general
three-dimensional antenna configurations and multiple jammers, there has not
been time to generate results for this report, Also, the theory developed for
error rate is valid for multiple jammers and antennas but insufficient time
was available to calculate results for this report. The results obtained
should be extended to include the effect of time and frequency selective fad-
ing. When the bandwidths become so large that system operation is impossible
due to frequency selective fading, the system must be modified to include

adaptive equalize s at the outputs of antennas,




SECTION 11

SYSTEMS TQ BE ANALYZED

Figure 2-1 shows a simplified block diagram of a fully adaptive

array showing M elements and M complex weights connected to the antenna

element outputs followed by a combiner, For simplicity, all frequency
conversion and filtering operations are not shown, The combiner output c(t)
is fed to the modem and to the adaptation circuitry. A reference signal r{t)
is extracted from the modem and/or combiner output. An error signal e(t) is

formed by subtracting the combiner output from the reference siynal

e(t) = r(t) - c(t) (2-1)

The error signal and the antenna element outputs are fed to a signal processor

that implements an adaptation algorithm for the complex weights Pps =«- Pye

The transmitter nodes are labeled 0, 1, ... L with the signal s(t)
being transmitted from node 0 and the jammers Jl(t), e jL(t) from nodes 1,

th

2, «.. L, respectively. At the kK antenna element, the received process 1is

represented as the sum of three terms
w lt) = s (t) + i (t) +n (t) (2-2)

a signal term S (t), a jammer term ik(t), and an additive thermal noise term
nk(t). The jammer term 1k(t) may be represented as the sum of contributions ,

from the L jammers to the kth antenna element

L
i (t) = 22 i (t) (2-3)
m=1

where 1mk(t) is the jamming signal received at the kthantenna element from the

mth Jjammer .,
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The signal term sk(t) may be expressed in the form

s (t) = Ss(t-g) hy (t,g) de (2-4)

where hOk(t,g) is the time variant impulse response of the channel from node O
to antenna element k. In general we represent the time-variant impulse

response from node m to antenna element k as hmk(t,g). The corresponding time
variant transfer function is

Hu(Fat) = Sn(t,e) e792fe g (2-5)

In terms of the time variant transfer function

s (t) = JSS(f) Hy (f,t) eIt ge (2-6)

Hok

where S(f) is the spectrum of the transmitted signal.

The received jamming signal i mk (t) has the two equivalent ex-

pressions

—_
=
—
—+
~—
i

(f,t) eIt 4¢ (2-8)

—_—
-+
~—
i

S I (f) H

mk m mk

where Jm(f) is the spectrum of jm(t).

The combiner output is given by

M

c(t) = X p, w(t) (2-9)
k=1

12
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The system of Figure 2-1 uses an array of wide beam antenna ele-
ments or subarrays. An alternate approach is to form multiple orthogonal
beams by a linear transformation (e.g., Butler matrix) and apply the adap-
tivity on the beam port outputs as shown in Figure 2-2. (Q < M beams are
formed by separate linear transformations on the M subarray outputs. The Q
beamport outputs are fed to adaptive complex weights and the adaptation

circuitry is the same as in Figure 2-1.

Another system configuration of interest is the sidelobe canceller

or power nuller shown in Figure 2-3. Under normal conditions the desired

signal appears only in the main beam of the signal antenna and the jammer

appears in the sidelobes. The auxiliary antennas perceive the jamming signals
and by weighting the outputs of the auxiliary antennas and subtracting from
the signal antenna output attempts to cancel the jamming signal. The system
of Figure 2-3 can be cast in the framework of Figure 2-1 by identifying the
signal antenna output as the reference signal. With ionospheric scintillation '
present, the transmitted siygnal may appear in the sidelobes and auxiliary
antenna outputs and the jammer may appear in the signal antenna. For this

reason we have shown paths from each transmitter to each antenna.

In this report we will confine our attention to the systems of [

Figures 2-1 and 2-3.




Y

{

Beamformer
(Linear Transformation)

daptation
Algorithm

P el

l
"1 2 Q
o0
&
P1 P2 PQ
PrP2 Py
combiner

/9: l output c(t)

—» to Modem

A

—_—

[l S —

Figure 2-2

\ﬁT/[;eference
. signal r(t)

— from Modem

Simplified Diagram of Adaptive Beam Configuration

14




———3

ot

p

Adaptation

.

Algorithm | €

Figure 2-3 Simplified

Diagram of Sidelobe Canceller System

Ionosphere

> to Modem




SECTION 111

OPTIMUM PERFORMANCE

In the performance analyses we shall have occasion to assume either

complete adaptation to the fading or no adaptation to the fading. In the

former case it is assumed in effect that the time constants of the adaptation
circuits are sufficiently small for the system to follow the instantaneous
fluctuations in the time variant transfer functions Hmk(f,t). In the latter
case the adaptive circuits average over the fading. (We neglect non-ideali-
ties in the adaptation process and circuitry.) 1In the former case the weights
Py (t); k=1,2,...M} are continually adjusted to minimize the mean squared

error signal “|e{t)|? averaged over the transmitted signal and jammer statis-

tics and the thermal noise fluctuations. The resultant mean squared error,
weights, antenna pattern, SNR's, etc. will be time variable even with non-
moving jammers and signal sources because of the fluctuations of the channels.
In the latter case the system will adapt to changes in the channel statistics
only.

It is well known (e.g., see [3.1]) that the solution for the

weights which yield the minimum mean squared error is given by

-1

P =C R (3-1)

where

©
[

T —_—
P = Epl’ p29 ev ey pM_J (3-2)
[Wf, —rwg, cs oy Wﬁ]

(3-3)

AL 208, SNRRE Y Y




|w1[2 wl*w2 wlin
WotWy W, |2 ces WZ*WM
¢ - (3-4)
B wM*wl wM*'w2 ose |wM|2-_

in which T denotes matrix transpose and we have suppressed the time variable
to simplify notation. [t should be understood that the averages assume the

channels "frozen",

The value of the minimum mean squared error is given by [3.1]

H -1

[ej* = Jryz-R°C°R (3-5)
or, alternatively, from (3-1)
_ H

fefz = (riz2-R P (3-6)

where the symbol H denotes a combination of matrix transpose and complex con-

jugate operations (“Hermitian" transpose).

To formulate an expression for the antenna pattern, it is necessary
to specify the geometry of the antenna subarray locations. For simplicity we
assume a linear array with half wavelength spacing between subarray centers.

In such a case the antenna gain pattern is expressed as

M : . 2
G(Q) = GS(Q) Z Ok eJ‘n(k-l)S1n¢ (3_7)
k=1

where GS(¢) is the antenna gain pattern for a single subarray and ¢ 1is the

angle measured from boresight,

17
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We may formulate an expression for the output SNR, p. This dis-

cussion of SNR is for the fully adaptive array and must be modified for the

SLC (sidelobe canceller) configuration, See Section 5.

M 2
2 P Sk '
k=1 Pisp
o = = (3'8) i
M 2 H '
. PP (NL+J) P :
Z Aligtn) -
k=1 L
where 1 is the identity matrix,
N = ‘nk‘z (3-9)
— —
—
15155178 S17%m
S
S,7s1 15517 ces Sy Sy
S = (3-10)
__SM*SI sM*s2 oeo Isyl? ~
- — ——
]11]2 LR P oo 1
!
PR ]1212 eee [P
J = (3-11)
1. PR v PR IiMH ‘

and it has been assumed that the thermal noises in the different antenna

elements are statistically independent and of the same level,




Since

C = S+J+Nl (3-12)

P T -1 (3-13)

and from (3-1),(3-6) we obtain the further equivalent expressions

o = -1 (3-14)

. = -1 (3-15)

We now consider the evaluation of the averages required to deter-

St—

mine P, je}?, o, and G(¢). In the evaluation we shall assume that the signatl

and jamming processes are statistically stationary. Thus [3.2]

S¥(f) S(a) = P(f) &(f-2) (3-16)
T8 = P (f) 6(f-1) (3-17)

where P(f), Pm(f) are the power spectra of the transmitted signal and the mth

transmitted jamming signal and &(+) is the unit impulse function, We shall

also assume that the various jamming signals are statistically independent to

simplify notation.




The received signal crosscorrelations are given by

]

s, s*

o JJ ST Hy, *(£,0) Hog(2+t) 27Nt qegy (3-19)

Using (3-16)

S*

S sy SJPUE) My *(£,8) Hy (F,8) df (3-20)

q

The received jamming signal crosscorrelations are given by

T e LT o7 F

k'q mk 'mq

- Y;ff_—’“dm*(f) T At (£.8) o ta,t) @270 gray (32

Using (3-18)

= E: j'Pm(f) Hog* (£ Ho(F,8) df (3-22)

We see that in general it is necessary to specify the joint sta-
tistical properties of the various transfer functions to evaluate the statis-
tical properties of the optimum solution to the adaptive array problem. In
the case of strong ionospheric scintillations the channel transfer functions
become complex Gaussian processes. Then their joint statistical properties

can be determined from knowledge of the correlation functians

m,n
k,q

sesasl
M (3-23)

1
* -
Ho X (Fat) Hngl2es) = R 2.

. . 0,
g(forstss) 5 1

nmk
This correlation function is more general than the mutual coherence functions
normally considered, in that we are asking for the time, frequency, and spa-

tial coherence functions for received signals corresponding to transmission of

carriers from two different locations in space rather than one,




SECTION 1V

TWO-ELEMENT EXAMPLE FOR FULLY ADAPTIVE ARRAY;
NON-FREGJENCY SELECTIVE CASE
In this section we apply the results of the previous section to the
simplest non-trivial example, the case of two omni-directional antenna
elements separated by a half-wavelength as shown in Figure 4-1, Such a con-
figuration is able to discriminate against a single jammer. We confine our
attention in this section to signaling elements that are sufficiently narrow-
band that no frequency selective distortion is caused by the disturbed trans-

ionospheric channel,

4.1 PERFORMANCE WITHOUT CHANNEL DISTURBANCE

It is instructive to compare the performance before and after the
onset of the channel disturbance. In the absence of a channel disturbance, it
is sufficient to model the quiet or non-disturbed channel by a simple phase
shift for the case of narrowband systems, as assumed here. With the desired

transmitted signal on boresight we may use

HOl(f’t) = HOZ(f’t) = 1 (4-1)
Hll(f,t) = 1 (4-2)
Hip(fot) = edmsing (4-3)

To simplify notation we have neglected path losses. This results in no loss

of generality since our answers are expressed in terms of received power

levels,
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3 Figure 4-1  Two-Element Example of Fully Adaptive Array




With the degenerate transfer functions (4-1) through (4-3)
wilt) = s(t) + () + ny(t) (4-4)
wy(t) = s(t) + j(t) eI"T® 4 (1) (4-5)
and from (3-4)
S+J+N SegedTSING
C = o (4-6)
S+ge ImSINe S+J+N
where
s = Ts(t)]? (4-7)
J = 1ifeNn? (4-8)

The reference signal r{t) is taken equal to the signal s(t),
r(t) = s(t) (4-9)

so that [see (3-3)]

R = ! 5 ,s] (4-10)
Then, using (3-1) we find that the optimum weights are

7Sing

S+J+N S+Jej
C = (4-11)

s+Je™d

nsing S+J+N s




Upon carrying out the algebra, we find that

%(1- ej“Sine) + 1
£ 8(%) e (4-12)

3o giney Ly

where
: ( )
- 4-13
Jy, Sy v . J S
4(N)(W)S”‘2(§‘5"‘9) + 2(ﬁ+ N) + 1

The minimum mean squared error is obtained by using (4-12) and
(4-10) in (3-6). Carrying out the operations and normalizing the error to the

strength of the desired signal,

OE
— = s(2({) + 1) (4-14)

For a large jamming signal (J >> S) and e not near zero

Jef? N
S * 725 sinz T%Lsffe) (4-15)
.’
Turning to the calculation of output SNR (3-8) we note that ,
B Ty v :
-~ . . - S S —l-e “V)+1
s p=ad)e | Hi-edhe1,(1-e70%) 0 N (4-16) |




v = wsin @

Upon carrying out the calculations we find that

2

Psp=s2s(® a2 sine(Fsi

ng) +1 ]

For the output jamming and noise power we have

Again, carrying out the operations

S 2

PRNI+OIP = 82 N(R) T (23#1) 2(2§sina(Jsing) +1)

which yields the output SNR

J+N

J -Jv
N(l-e Y+1
J .

N

Copfse o (& sinagsine)
LTI T L NPT A
We note the 1imiting cases
o - 3% for ¢ - %
o+ s for o - 0
p Z% sinz(%sine) for % sinz(%sine) » 1
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(4-18)

(4-19)

(4-20)

(4-21)

(4-22)

(4-23)

(4-24)
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For ¢ » /2 the jammer is completely nulled by the same weights which maximize
the desired signal level, while for ¢ » 0 the jammer is located on boresight

(as the desired transmitter) and no jammer suppression is possible.

It is intuitively clear that when the reference signal equals the
desired received signal s(t), an appropriate measure of SNR is provided by the
ratio of the signal strength S of the reference signal to the mean squared

departure of the output signal from the reference signal, i.e., the ratio

S/ lej?. From (4-13) and (4-14) we find that

ARNPsinaFsing) + 2(% + ) + 1

S ~ (4-25)

B 2 (5 +1)

Using (4-21) in (4-24) we find that
2 o1 ' (4-26)

The expression for the antenna pattern G(¢) is given by (3-7).

Using (4-12) in (3-7) with GS(¢) =1,

32(%)1 (%)(1_ejwsine)+1 + (%)(l-e'3“51"°)+1

eJnSlﬂQ

G(¢)

(4-27)

26

vt &



As we have mentioned, when e = w/2 the janmer is completely can-

celled and the antenna pattern is set for maximum gain at ¢ = 0. Collecting

terms in (4-27) and normalizing to G(0) for 8 = «/2,

J ; J . 1 . 2 i
(5 +1) cos(% sing) -~ & cosx(sing - 5 sing) ‘
Glo) . N H N 2 (4-28)
{G(O)]e=n/2 g+
3
E
27 -




4.2 FLAT FADING WITH SPATIAL DECORRELATION: ARRAY ADAPTIVE TO FADING

The first case we shall examine with channel distortion is that of suffi-

ciently narrowband transmission that essentially flat fading results. However

it is assumed that the antennas are far enough apart that there is some de-
correlation between the perceived jammer and signal channel fluctuations at
the two antennas. We also assume in this section that the time constants of

the adaptive circuitry are small enough to allow adaptation to the fading.

With the above assumptions we may express the channel transfer

functions in the degenerate forms

Hor (1) = 95, (1) (4-29)
Hoa(Fot) = 5, (t) (4-30)
Hy(Fat) = g (1) (4-31)
Hp(Fat) = g (t) eI"81Ne (4-32)

in which gmn(t) becomes a complex Gaussian process in the limit of strong

scintillation.

The received processes are now given by

wl(t) = ggy(t)s(t) + gll(t)j(t) + "1(t) (4-33)

jusine | n,(t) (4-34)

t

9oa(t)S(t) + g, (£)5(t) e

Wo(t)
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and the crosscorrelation matrix by [see (3-4)]

jasin
1901125 * 19112 + N 9519025 * 911912087 "

)
1]

o (4-35)
* * -JnsSing
9019025 * 91191078 1992178 * 19g,1% + N

where we have temporarily omitted the argument (t) from the complex channel

gains to simplify notation,

The reference signal-input process crosscorrelation vector takes

the form [see (3-3) and use (4-9)],

R = 9515+ 952 (4-36)
To solve for the adaptive weights we require Qfl. This inverse is
found to be

- - * * JﬂS'ine
1902125 + 1915120 + N (9319025 * 911929 )

'
—
[

c o (4-37)
- -jnSing
(9519525 * 41197278 ) 19713+ 197129 + N

where the determinant
A= (199 12S + 195,120 + N) (190,128 + ]g,12 J + N) -

Jasing |2

*
901925 * 911927¢ (4-38)
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Upon carrying out the algebra in (4-36) we find

. . g g
- 11\{°02
b= S0 lgg )7 19y, 1-e3"5‘"°(~_)(_)
01 12 912/\90)

N ([mmv o021 ) s+ Do )® + 193217 J) PN (4-39)

We compute the weight vector via the matrix operation (3-1)

r— . « -
JﬂSTne

(?*01 191217 - 91191292 © )SJ + 95y SN

. (4-40)
~ S1neg
(962 191117 - 91,91,95; " >5J + 982 SN

— —

The mean squared error is obtained from (3-6)

H

47
»
1}

w
]

w
i

_ * jﬂSine
(961 191217 - 911912%:2 © ) S+ g5, SN

L
ST % l g015’9025—} ~jusin
- - <?62 191117 - 91191981 ¢ e)SJ * 95, SN

(4-41)

The result is

J .
¥ (1901 19pp07) <1
] 12
! - e-jnSinG(Ell)(EQ@)
912/\901

(1901 * 19g217) +§ (1o 1+ loy1%)+ 1

(4-42)

lel® .
s

(R 199117 19751
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It is worth pausing to examine the expression (4-41). Assuming the

usual case that the jammer is much stronger than the signal and the signal
much stronger than the noise, i.e.,

J > § >> N (4-43,

with the average strengths of the channel gains normalized to unity, i.e.,

9111 = 1911F = 1911* = 19p21" = 1 (4-44)

then, except where the term

i g g
Alo,t) = | 1-e J"S‘”°(§ll)(§93) (4-45)
: 1273701
!
is very much smaller than unity, we have the approximation
N2
el? 199, 1% * 19yp1° N ! (4-46)
s 7 19y51° S 19,917 ] Ale,t)

Let us first examine the form this expression takes when the spatial

decorrelation vanishes, i.e., when

91 T 92 (4-47)
%1 T Y2 (4-48)
Then the first factor becomes the numeric 2 and
Ale,t) = 4 sin’(%~sine) (4-49)
yielding
el L@ N ! (4-50) ‘

n

> sing)

s S 199,17/ \dsin® (




We see that the dependenc: of the mean squared error on the jammer
angular position o is the same as the non-fading channel, but the level of the
mean squared errcr is strongly influenced by the instantaneous strength of the
signal channel, i.e., of the received signal level, 1In a deep signal fade the
mean squared error will become much larger, as one would expect. However this
is the normal impact of a fading signal and must be counteracted by modem
design, At any given signal level, nowever, the adaptive array is doing its

job of suppressing the jammer via the third factor in (4-50),

Returning to (4-46: and assuming that there is a small amount of
spatial decorre:ation, the first fac.or in (4-46) will reside close t> the
numeric tw. on the average. The second factor is the same as in the case of
zero spatial decorrelation, Thus it is primarily the third factor which
brings in the effect of jammer angular position on mean squared error and we
must examine this term to assess the impact of spatial decorrelation on the

dependence of jammer nulling on jammer angular position.

We consider now the calculation of output SNR (3-8). The relevant

matrices are

*
199117 90192
s = s . (4-51]
2
901902 19go1
tgg 12 0 + N 90 &
Nl + J = o (4-52)
- - * 'stme
9119120 © 19)p1% J + N
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After laborious calculation of

pH

PSP
b - (4-53)
| TN
it was found, again that
S = o+l (4-54)
lef?

Apparently the relationship (4-54) is valid for the non-frequency selective
narrowband channel case. It is not known under what more general conditions

(4-54) may be valid.

Using (4-46) we find that

J
_ s\(ﬂ) A(99t)|901'2'912l2 + '901'2 t Igozlz
[ = (N/ J (4"55)
(-N—) ('glllz + '912|2> +1
In the absence of jamming
= S 2 2
P (ﬁ) |901| + '9021 (4-56)

Thus the adaptive array operation produces dual diversity with square law
combining in the absence of jamming,

For strong jamming

A(e,t) >> 1 (4-57)

Ale,t}

P




Using Eq.(3-7) and the adaptive weights (4-40) we find that the

antenna gain pattern
J -jn{sing-sing) -Jwsing '2
So) ,ﬁ'(giz e 911)9%01912 Alest) *{901*902 ©
(4-58)

The ratio of the gain towards the signal location ¢=0 multiplied by the signal
power to the gain towards the jammer location ¢=¢ multiplied by the jammer

power is sometimes of interest, This is just

J -junsing 2
lﬁ (932‘9 Tl) 9g191Meat) # (901+902> l
S6(0) _ 3 — (4-59)
JGle) ~ N J -jnsine\}?
v * ok
‘N (912 911) 9p1912A(0-t) * (901+902 ¢ )‘
Assuming no spatial decorrelation but still scintillation
92 T 91 (4-60)
%1 ~ Y2 (4-61)
and (4-59) simplifies to
2 J g 2 sin? {4 sin 90 + 1 :
G(0) _ S N9l " ?
G(e) J (4-62)

¢os (g sin g&

which differs from the non-fading ideal channel case only in that the factor

'glllz accounting for the jammer power fluctuation is present.
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4.3 FLAT FADING WITH SPATIAL DECORRELATION: ARRAY NON-ADAPTIVE TO FADING

In the previous section we studied the performance of the two-
element adaptive array assuming that the adaptation circuits can adapt to the
assumed flat fading. Here we consider the other extreme: adaptation circuit
time constant larger than the fading time constant. In such a case the cir-
cuits average over both the input processes and the fading fluctuations. The
crosscorrelation matrix C (4-35) and crosscorrelation vector RT (4-36) must

then be changed to

jasineg
1907178 * 1911120 + N T519025 + 9119,0¢7
¢ = jusine (4-63)
* * -
9019025 * 91197p7¢ 1992175 * 19),1%3 + N
U £ 4-64
=2 - gOIS ’ 9025 ( - )

where we have assumed r(t) = s(t).

We note that if the fading is sufficiently severe that

91 92 = O (4-65)

T will vanish and the optimum

as in the case of complex Gaussian fading, R
weights will go to zero, shutting off the array. This phenomenon does not
occur in the case of a sidelobe canceller as will be discussed in the follow-

ing section.
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p- 1

We normalize the channel strengths and define correlation coeffi-

cients and mean as follows

199117 = 199,17 = 19,117 = 195,17 = 1 (4-66)
9519
0 = 01702 (4-67)
\/19111 |902|2
911912
31 = (4-68)
‘/ '911| ‘902]2
R TR 7 (6-69)

With these definitions

S+J+N 0pS *+ 079 gJmSINg
[ i e (4-70)
0fS *+ ofd e Jnsine S+J+ N
R | -
= mS , mS (4-71)

The inverse correlation matrix is given by

—

S+ +N - (“05 ‘ol ejws1ne>

]
—
o> | -

(4-72)
1

-(oaS + o*Je‘J"S1"°> S+ J 4 N
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a = SHL - Jogl?) + 921 - Joy]?) + 25I(1 - Re(ofp e’ V)

+ 2(S+J)N + N2 (4-73)
Using Eq.(3-1) the optimum weights are given by

(1'00) + % (1'01 eJ"S1ne) + 1

Z|l»n

P == o (4-74)
(1-p8) + 3 (1-0% €738 4y

—_ !

1%
=

Note that when there is no spatial decorrelation, i.e.,

= o = 1 (4-75)

°0
the optimum weights differ from the non-fading case only by the factor m. In
fact it is seen that when (4-75) applies, the channel complex gains may be re-
defined as part of the corresponding transmitted processes s(t) and j{t).
Consequently, antenna patterns and SNR's will then be the same as in the non-

fading case., Mean squared errors will differ, however, because of the reduc-

tion in weights by the factor m,

If the spatial decorrelations become so severe that

= pO = 0 (4-76)

°1
then (4-74) shows that the adaptive weights become equal in value. This will

produce an antenna pattern optimized for the signal in the absence of jamming. '

Thus the jammer nulling capability has been completely destroyed.
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Consider another special case. Suppose that there is no spatial
decorrelation for the signal, that the magnitude of the jammer spatial decor-

relation is close to unity but there is a non-zero angle, i.e.,

oy = 1 (4-77)
101] = 1 (4-78)
Yo = v (4-79)

then we see that the jamming is evident (apart from the factor m) only in a

replacement
-x sin g =+ y-xSin e (4-380)
i.e., from the point of view of the adaptive array the angular position of the

jammer has been changed to a new angle ¢, where
rsiny = gsine -y (4-81)

That is to say the null will be steered in error by the angle y-9.

The mean squared error is given by Eq.(3-6)

2 g2n T S i -
eir = s -2 SN2 (0 - Reqog)) + { (1 - Repe?™™%) 41

(4-82)

|

=z
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Note that unlike the situation wherein the array adapts to the fading, the

mean squared error does not vanish when the thermal noise vanishes:

Jnsineg

J
— (1 - Refp,}) + = (1 - Re{p,e })
le]? | 1-2m2 0 S 1

S (1 - 1ogl®) + (D (1 - 1oy17) + 2D (1 - Retofo e "?

})

(4-83)

For large J/S ratios this expression further simplifies to

ejnsine

1 - Re{p }
le!z S 1
> 1-2}m]2 J 1= 10112 (4-84)

which shows the mean squared error incredasing as J/S increases. This may be
contrasted to the case of fading adaptation where the error reaches a minimum
at nhigh J/S ratios. The problem here appears due to the term (J/S)z(l—loll’)
which vanishes when spatial decorrelation is absent. It will be shown that the
term (1—|01|2) is directly proportional to variance of the angle of arrival

fluctuations due to the ionospheric scintillation.
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SECTION V

SIDELOBE CANCELLER EXAMPLES

In this section we apply the results of Section 3 to the case of a

two-element SLC (sidelobe canceller) as shown in Figure 5-1. We assume suffi-
ciently narrowband transmission that frequency selective distortion may be
ignored. As in the case of the fully adaptive array of Section 4 we consider
three cases in order: non-fading, fading with array adaptation to the fading,

and fading with array non-adaptation to fading.

To simplify the analysis we shall confine our attention to the case
wherein the signal level received in the sidelobe canceller antennas is small

enough relative to the jammer level that it may be neglected.

5.1 NON-FADING CASE
Using the above assumptions and unity gain channels, the signals

received in the three antenna beams of Figure 5-1 are expressible in the form

wo(t) = Ag(eg)s(t) + Ag(e;) (L) + Ag(s,)ip(t) + ny(t) (5-1)

L d . o d .
—JZﬂ;S1n9 -sz—s1n92
Jp(t) + ny(t) (5-2)

wi(t) = A(e))e 1

Ji(t) + Aj(e,)e

jordsine, jerSsine,
wz(t) = A2(91 e 3, (1) + A2(°2)e Jp(t) + n,(t) (5-3)
where Ak(e) is the complex antenna pattern for the k*" antenna as a function
of the angle measured relative to boresight (see Figure 5-1) and 8> 8> and
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8, are the angular positions of the signal, jammer 1 and jammer 2 transmit-
ters., The distance between the electrical centers of each of the sidelobe
antenna canceller beams and the main antenna is d. To simplify notation we

shall assume identical canceller beam patterns
Aj(e) = Ay(e) = Ale) (5-4)
As discussed in Section 2, in the case of the power nulling system
the reference signal r(t) is set equal to the main beam output, i.e.,

r(t) = wlt) (5-5)

Thus the crosscorrelation vector R [see Eq.(3-3)] is given by

R = [_ No¥] > YW (5-6)

Computing the averages we find that

Jv,/2 Jv,/?
; HOle Jl + HOZE J2
R = (5-7)
-jw1/2 -Jw2/2
HOle Jl + Hoze J2
_ —
where we have used the definitions
Hon = Agle,) A*(e) (5-8)
v = 4y g-sin ) (5-9)
n A n

and Jn is the strength of jn(t).
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The next quantity needed is the correlation matrix C [see Eq.(3-4)]
which we readily find to be
ivy jv, ]
Gld1 + GZJ2 + N Gldle + szze
cC = (5-10)
Gldle + G2J2e GIJI + G2J2 + N
in which we have used the definition
G, = IAg(e,)]? (5-11)
The inverse correlation matrix is given by
Jvy v,
11 Gldl + GZJZ + N -Gldle - szze
C = -A— ) . (5-12)
‘le '\]Wz
-Gldle - szze GlJl + G2J2 + N
where
h17%2
= in2 |1 ¢ 2 -
A = 4 GlG2J1J251n 5 + 2N(Gldl+ G2J2) + N (5-13)
The optimum weights are obtained from Eq.{3-1) as
P = 1
3 [ vy vy Juy/2 ivp/27)
1 . GJy + GZJZ + N '(GIJIE + GZJZE ) HOldle + H02J2e
3 . . . .
-J¥y -Jv, 3w, /2 -J¥,/2
-(GlJle + szze ) Gldl + GZJ2 + N HOldle + Hygpdpe :
(5-14)
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Carrying out the indicated operations we find

ZJIJZJ sin\ = GIHOZ - GZHOIe + N HOldle + H0 J.e

L Yy 'J¢2/2 -le/Z -3y /2 -sz/a
2J1J23 sin{ =5 G2H01 GlHOZ + N HUlJle + H02J2

o[

(5-13}

The minimum mean squared error {minimum output power in the present
case) is given by Eq.(3-6). After carrying out the operations indicated we :

find that

le}? = GOOS +N+2ND (5-16)

in which

0 =(J )( é)( g Gy + Gppby - 2 C?5<w12¢2)Re{H01 02} ) J(Glo * Gzo(iﬁj) H
' il %) o Sinz(*12*2)+ 2<Gl<—1‘ o) (5-17)

and we have used the definitions

G

n0

IAO(en)lz : n=1,2 (5-18)




In the case of a single jammer (5-16) simplifies to

(5-19)

The first term in (5-16) is the signal output power while the re-
maining terms constitute the output noise and jamming level. Thus the output

SNR is given by

S
o = SN TH (5-20)

For Targe J/N ratios (wl # wz)

byi-v
Mgl 17IAGep) 1 1A (ey) £1ACe)) |z-zRe{A5<el)A(el)A()(e?_)A*(ezncos(l—z-i)

h17%2

4}A(e))2]A(eZ)j’sinz —5
(5-21)
Note that D is directly proportional to the level of jamming power entering
the main lobe (i,.e., the gain of the sidelobes of the main beam). If we
assume the ideal condition that the complex gain of the canceller antenna is
set equal to the complex gain of the sidelobes of the main beams and these

gains are independent of jammer position

Ao(el) = Ao(ez) = A(el) = A(e?) {»-22)
Then we see that D = 1 and
G,,~S

b =~ : (Ay = A) (5-23)

Note that the SNR has decreased by a factor of 3 over an unjammed case,




i ae

On the other hand if the sidelobes of the main beam are much weaker than

the gain of the canceller beams, i.e.,

[Aglen) 1 << Aley) 1,2 (5-24)

=]
3
]

then we see that

2|

o+ Gy (JAg} << A) (5-25)

and no loss in output SNR will occur relative to the unjammed case.

In general, at large J/N ratios, the jammers are cancelled but the
resulting thermal noise level will vary depending upon the size of the main

beam sidelobe gains relative to the canceller beam gains.

C e e meerbay me e

'.‘:J’:"_--‘"n,

d




5.2 FLAT FADING WITH SPATIAL DECORRELATION: ARRAY ADAPTIVE TO FADING

In this section we assume the channels from the two jammers and the sig-
nal to the three elements, nine channels in all, are subjected to flat fading.
Moreover we assume that the channels from a given transmitter to the different
antennas may fade differently. The received process in the main beam, the

reference signal, may be expressed in the general form

wolt) = hogs(8) + hygd (8) + hyoio(t) + ng(t) (5-26)

where, for simplicity, we have incorporated the effect of the main beam
antenna pattern on the received signals within the definition of the complex

channel gains hOO(t), hll(t)’ and hzo(t).

Similarly the received processes in the two sidelobe canceller

X
—
—
(2
~—
|

r beams are
; hlljl(t) + h21j2(t) + nl(t) (5-27)
|

Wz(t) = hlzjl(t) + h22j2(t) + nz(t) (56-28)

where the antenna patterns of the canceller beams and any phase shifts caused

by antenna spacing are incorporated in the {hmn(t) tm,n = 1,2},

a7
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Relating the notation in the present and previous sections,

hoolt) = Agley) ggglt) (5-29)
hlo(t) = AO(el) glO(t) (5-30)
hzo(t) = AO(OZ) gzo(t) (5-31)
hll(t) = Al(el) e gll(t) (5-32)
-j¢2/2
h21(t) = Al(ez) e 921(t) (5’33)
Jv,/2
hlz(t) = Az(el) e glz(t) (5‘34)
J¢2/2
hyy(t) = Ay(e,) e 9pn(t) (5-35)
where gmn(t) represent the complex channel gains that have been normalized
(without loss of generality) to unit average squared magnitude

[z = 1 (5-36)

Using (3-2) and (3-3) with r(t) = w,(t) and carrying out the

of
indicated averages




NoN1Y91 * N2oh3y Y2
R = . . (5-37)
MoM291 * "ag"22Y2
- 2 *
Ihpp I8y * Ay 170, + N MMt * M2,
¢ * * (5-38)
M2 * M hdeds thygl®dy + thyyl®dy + N

where we have assumed that the two jammers are statistically indepencdent and

of strengths JI,JZ.

The inverse to C is given by

- Ihpl 20y + Thyol2dy + N =(h3 h 000 + hEin,,d,)

11M291 * "31M20
¢l- -% (5-39)
- * * 2
(hpN]pdy * Mgyh3pdp ) fhy 139y *+ dhyy 20, + N
where
= - 2
8= N ghop=highy 17 Jpdpt iRy PR E2IND) + ([hy) 1241055 [ 2IND, + N2
(5-40)
The optimum weights for jammer cancellation are then [from 4-70)]
P =
Iygl2y + fhypl®dy + N =(h1 hypdy + W5 hyody) Mo"T191*M20M51Y2
]
A
=(hyfpdy * hgghspdy ) 129y + Inpy 120, + N N1oM291% 20322
(5-41)




Carrying out the algebra
(3T 1= 131nTo) (Noahyg-Nyahag)d dot nyght d Nehoghs d N

* ph* h* p* _ * *
(N300 510 2) (hyyhog=ho )Y pd ot Mg od N30 N

(5-42)

Continuing on to compute the minimum mean squared error (in the
present context this would be the minimum array output power) using Eq.(3-6)

R we find after considerable algebra that

J J J
1)(?2 (%1 (22
(N ><‘”>( A1p*2p2) * ('h10‘ (W“ L (‘N))
677 = [hogl2S + N + ;
<F%><F§g (“) (fh 11'2"“‘12'2)"<N2>(""21‘““‘22‘2)*1

(5-43)
where
Byp T Mgy - Nyphyy (5-44)
891 = Ihyghpy = My 1? (5-45)
bop = IMyghpp - Maghiol? (5-46)

The first term in (5-43) represents the output signal power while
the second two terms represent the output noise and jamming power. It follows

that the output SNR o is given by

Y1\( Y2 Jq Jp
noj2 S K}T)(NT>A12+< N (|“11|2+|"12'z)+<ﬁ‘ (o 12410y, 1041
0012 %

<J1)<J2> Jg 2: J2 fé
AU AR TR A PU G e A

n:

o =
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which becomes for large J/N ratios (A12 £ 0)

S 412 . 1

= — >> 1
N agy + 802 * 85 N

> 1 (5-48)

The guantities Bon 2T€ functions of time due to their dependence on
the channel fluctuations, so that the resultant SNR (5-48) is also time vari-
ant. An interpretation of (5-48) is that at large J/N ratios the jammers are
cancelled at the output but the resultant thermal noise is time variable and

of level

At A
) 01" 202\
Nout = N (1 + "“;;;“) (5-49)

For a single jammer we see that

J
1
'S (thy 12+ th 0% +1
- S N 11 12

p = |h00|z‘ﬁ ‘Jl (5-50)

o hggl® #dngyls + dngpl®) + 1
which at large JllN values becomes
S 1
p = |h00|2 N A (5-51)
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ARRAY NON-ADAPTIVE TO FADING

5.3 FLAT FADING WITH SPATIAL-DECORRELATION:

In this section we will assume flat fading and spatial decorre-
Tation as in Section 5.2 but we now assume that the adaptation circuits cannot
follow the fading. Section 5.3.1 considers the case of two jammers and two

SLC antennas while Section 5.3.2 examines one jammer with M SLC antennas.

5.3.1 Two Jammers and Two SLC Antennas

The reference crosscorrelation vector R and correlation matrix C

now become

o hE R R¥
Mot ¥ Magh21Y2
R = (5-52)
R1gTed1 * PaghaYs
R LU LUTT R PR P21 * Moifads
C = (5-53)
TS P R PYL PP a1y * {hgpt ™y * N

Using (5-29) through (5-36), the averages in (5-52) and (5-53) may

be related to jammer positions, antenna patterns, and fading correlation

coefficients as follows

X le/z
hofl1 = Aoleg) Afle) e = epp 10 (5-54)
S .y J¥fE
o8y = Aglep) Afley) e 021,20 (5-55)
. 'i®1/2
holz = Agley) A3(e;) e £12,10 (5-56)
- " '302/2
haaMse = Agleg) A(e,) e £22.20 (5-57)




h*.h

1112

h31M22

At(ep) Ay(e;) e

Ar(a,) Ay(s,) e

JWl

sz

11,12

21,22

where we have defined the correlation coefficient

The correlation matrix inverse is given by

[Nl *+ Ihgpl®dp + N

- *
(M) P29

-(

h*. h. _J

1171271

+ h* h__J.)

212272

*
t o N300, )

53

[hyg 123y * dhpy 12, + N

(5-58)

(5-59)

(5-60)

(5-61)

(5-62)

(5-63)

(5-64)

(5-65)




where 4 is the determinant of C

2) J.2

2
= 2 2. * 2 - *
a = (hpl® Ihyyd |h11"12! Wyt + (hoo * qhy 12 |h21"22' 2

+ (hoal® Thypl2 + Th o1 ® Thyy1* = h5ihys =y 0T, - By, hogh3, )00d,

*NCThy 12+ dh o 2)0) + NCThy, [2 + fhyy [2) + N2 (5-66)

Using Eqs.(5-54) through (5-63) to relate the averages in (5-66) to

the antenna gains and channel correlation coefficients

b= Gpp0yp (L = Jeyy gl Iy " + 68001 = gy p1%) 957

- * * :’
' [622611+ 621512 2Re{A§1A22A11A12°21,22°12,11’:]J1J2 |

+ N(Gll+G )J, + N(GZI+G22)J2 + N2 (5-67)
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Expressions for the optimum weights, mean squared error, and SNR
may be obtained as in the previous sections but these do not simplify as in

the previous case and we do not present them. A subsequent memo will present
results based on computer evaluation. However, to obtain some understanding
of the effect of spatial decorrelation without using a computer, it is suffi-
cient to consider special cases. Consider first the case of a single jammer,

Then (5-52), (5-53) and (5-65) simplify to

~
oM Y
R = (5-70)
w hE
ho1e Y
L. —_
oz d + N R J
c - 11 11712 (5-71)
*
Mz J thypl®
g | Mattdord B TETE
C = K (5-72)

where

a =02 (Thy 17 Thy 0 - TRERT2 ) + N (TR, 17 + TRy 17 ) + N (5-73)
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Using (3-1) and (3-4), the optimum weights, minimum output power and output
SNR are

* - * *
(Tl gy = M ahgp MoMie) 9 ¢ N ART,
P - (5-74)
¥ * ¥
(TR 12 PR, = Ny, M) 9+ Ny,

o |

8 o) o §) T
lef? = Thpg1?S + N + N (5-75)

(%)2 Dy (N)( gl * Ihp12 ) + 1

AL ) 2 2
s (@) 0t (9 (Wl + 1o+ (5-76)

w? (%), D) * (%)z Dy + (%) D5 + 1

where
Dy = fhyol® thypd? dhgpl® - Ihyel? | 11 \2, Thy,1? | 10 11l
- TR 2 Re( FE R RE R, - RihEL 3 (5-77)
11 10M2 ToM1 * M1t Mo
D, = Thigl® Thipl® - Ighi, |’ + TaggT® Thyq 17 - gyl (5-78)
2 10 12 10M2 10 11 10M1
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2
= - * -
0, = T T - (A (5-79)
D4 = 02 + 03 (5-80)
Dy = Ihyol? *+ Thypl® + Ihy,12 (5-81)
and
|h10| = le(el)lz (5-82)
Examining the SNR (5-63) for large J/S ratios we see that

D

- S 3
o+ Thgel® T°5 (5-83)

Thus, as in the fully adaptive array (Section 4.3), when the adaptive array
does not adapt to the fading, the jammer can be reduced but not cancelled and

the output SNR varies as the input S/J ratio for large J/N ratios.

The "processing gain" against the jammer (ratio of output to input
S/J ratio) is just

D
g - 3 (5-84)

1900 |2 Dl

since the input signal/jamming power ratio is

($/9)

input

19001 *

Mk

3
J

(5-85)
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The presence of spatial decorrelation causes the term D1 to be non-vanishing
and results in the poor asymptotic behavior (5-71). To see this, we may use
Eqs. (5-54) through (5-62) and (5-70) to express the coefficients D1 in terms

of antenna gains and channel correlation coefficients. The result is

Dy = GygbyyGyp {1 - degp q2l® = legg 11l? - ‘910,12"

* -
* 2 Re Loy 10 P11,12 fl0,12 }:] (5-86)

Expressions follow for 02 and D3 (and thus D4) which also exhibit

the vanishing behavior with the absence of spatial decorrelation,

Gy0%12 [_? - '”12,10"-:} * 611610 I_} " legy,10! _J

611612 [:} - le1n,12!” :]

Thus the processing gain may be expressed as

1 - leogy 1pl?

Vodogg pal® = Tegg 11 t? = Tegg121® * 2Rty 15 011,12 010,12 !
(5-89)
An even simpler case worth examining is the case of a single can-
celler antenna and a single jammer, In this case we assume 90 = 0, J2 = 0.

Then in Eq.(5-75), D3 = D1 = 0 and




J
) 6y, + 1
N ¥) b1 (5-90)

o = Gpg

N (T2 3
B G811 - lo10,111%) + (§) (6)9*6);) +1

Again we observe the same type of behavior at large J/N ratios

G
o v 2 3 L (5-91)
510 1- E
P10,11

Thus the processing gain at high jamming levels is

g - L (5-92)

1 - te1p,11!"




5.3.2 One Jammer and M SLC Antennas

We now derive a general expression involving only channel correla-
tion coefficients for the high J/S ratio processing gain against one jammer
when M s delobe cancelling antennas are used. With a single jammer

wolt) = hgolt) s(t) + ho(t) g(t) + ng(t) (5-93)
W, () = h(t) §(t) o (t) i om=1,2,...M (5-94)
The reference signal crosscorrelation vector and the input process covariance
matrix are given by
———
thhll
"o 2
R =4 . (5-95)
"1oMIm ‘
e .
| Ty T d +N ¥R, ... RE A |
i
RF R TR T™ !
hioM, J h12 J+ N ... !
L= (5-96) |
* i,
F thhll J ces lthl’ J+N |
3 ]
“. I‘
§
4
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In terms of antenna gain patterns and channel correlation coeffi

cients
_ . 3y
thhlm = AO(el) Am(el) e pmo (5-97)
_ . -J(Yp'Ym)
hlmhlp = Ap(el) Am(el) e Dmp (5'98)
where we have used the simpler notation
PIm,10 ~ Pm0 (5-98)
°Im,1p ~ Pmp (5-100)

and defined Y 35 the phase shift in the received jamming signal at the mth

antenna relative to that at the main antenna due to differential path lengths.

Using (5-98) in (5-96) and assuming that the jamming power is large
enough relative to the noise that N may be neglected in (5-96), we see that
the typical term in (5-86) may be expressed in the form

_J ( Yp-Ym)
Pmp }

¢

P = 1 ; m=1,2,...,M (5-102)

{A (91) A:l(el) e

0 (5-101)

where




As a consequence of (5-101) we may factor C into the form

, H ;
C = JA ryA (N=0) (5-103)

where AH is a diagonal matrix

* ) le 0 0 )
Al(e1 e ‘ .o
0 Ivy
A5(e e cee 0
Al - (5-104)
0 c(oje ™
. 0 Ayle; e
and r is a matrix of crosscorrelation coefficients
! P12 a P1,M
1o 1 ces
Iy = . (5-105)
°im !
Using (5-97), (5-95) becomes
B N JYl I
Alegde "o
* JY2

A3(ey)e = ogg

R =4 AO(el) . (5-106)
jYM
Aile)e  oyg

62




The minimum output power is [Eq.(3-5) with the reference signal
r(t) = wy(t)]

el = TgelP s +ThgTo+n -/ ¢lroc (5-107)

and the output SNR

fhoo [ S
o = o . (5-108)
ThgT7 9+ N-R"chg

Using (5-85) and letting N + 0, the expression for the processing gain at high i
J/S ratios becomes

[ 1 '

G = e - - (5-109) 1

M (79 s mput S e R ;
Carrying out the operations indicated in (5-109) we find j
_ 1 |

W T TR T (5-110) |

T ey LIy oy ¥

where

H = * * * o
OM _ 010’ 0209 *ee DMO_’ (5‘111)




SECTION VI

SOME AJ PROCESSING GAIN RESULTS AGAINST A SINGLE JAMMER

FOR THE FADING NON-ADAPTIVE SIDELOBE CANCELLER

6.1 INTRODUCTION

In order to obtain numerical results on AJ performance using the
theory developed in Section 5.3.2, it is necessary to specify an SLC antenna
array configuration and a spatial correlation function,

For an arbitrary direction of arrival and an arbitrary antenna con-
figuration, the electrical centers of the SLC antennas will not all fall in a
plane. However, the correlation distance along the direction of propagation
is very much larger than that in the perpendicular plane. We shall assume
that for the size antennas of interest the dimensions along the propagation
direction will be small enough to produce negligible spatial decorrelation.
As a result, for purposes of calculating the spatial correlation coefficients,
it is sufficient to project the electrical centers of the antennas into a
plane perpendicular to the direction of propagation. The distance between
electrical centers in the projected antenna are used in the computation of
correlation coefficients.

As an example, consider the linear array shown in Figure 6-1, The
angle of arrival of the jammer (in the absence of scintillation) is & relative
to boresight. Antenna numbers 1,2,...,M are the SLC antennas spaced d units
apart while the mainbeam antenna is located at position 0. The projected

antenna is shown in dashed lines. For the projected antenna the elements are

spaced d cos o units apart.




antenna
boresight

Figure 6-1

Linear Antenna Array Example
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In the discussion below we shall initially assume a general spatial

correlation function and then one of specfic form appropriate to ionospheric

scintillations, Section 6.2 derives expressions for the AJ processing gain of

an SLC for special cases of interest where the general expressions simplify to

a greater or lesser extent, Section 6.3 presents some numerical results,




6.2 DERIVATION OF AJ PROCESSING GAIN FOR SPECIAL CASES

According to EqQ.(5-108), the output SNR for a single jammer is given by

IWERR
o = 00 (6-1)

—_—— H

thygl?Jd + N - R chr 5

where S is the transmitted signal power, J is the transmitted jammer power and
N is the additive noise power. The vector R is the crosscorrelation between !
the main beam signal and each of the SLC antenna output signals, and C is the
crosscorrelation matrix of the SLC antenna output signals. 'In the absence of
the SLC, the output SNR would be

Y ER
[hoo! (6-2)

0

———en.

iglz d + N

Defining the AJ processing gain as the ratio of output SNR with the

adaptive array to output SNR without the array, we find

o = L - ! (6-3)
P0 1 - gictr
[hygl? J + N 5

Expressions for the typical terms in R and C are [see (5-93)

through (5-11) modified so that N # 0],

Jvm
J AO(e) (Aa(e) e b 3 M= 1,2,...M) (6-4)

R

o ilpvg) i
(A, (o) An(e) e Jomp * &mp N 5 mup = 1,2,...M  (6-5)
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where Am(-) is the antenna pattern for the mth antenna, ¢ is the direction of

arrival of the jammer relative to boresight, y is the phase delay in the pth
antenna relative to the main beam antenna for the jamming signal, pmp is the
crosscorrelation coefficient between fluctuations of the channels from the

jammer to the mth'and pth antennas (pmm=1), and

1 sy m=p
cmp
0 3 m#p

As in the case where the noise N was assumed zero [Eq.{5-103)], it
is possible to factor C as follows

_ H
c = oAt (6-7)

where A is the diagonal matrix [Eq.(5-104)]

A -JYm
A = {Am(e) e smp smp = 1,2,...M) (6-8)




where

Gom = [Ap(e)]? (6-10)
is the gain pattern of the mth antenna evaluated at angle ¢,

Using (6-4) and (6-7) we find that

RUchR = Jofal ol (a1 g (6-11)
but

At - A5 (o) _o,:* (6-12)
where

oH ox o

M E 100 200 °°° MO]
so that

RUC R =0 ol oy 1Age)) (6-13)

Using (6-13) in (6-3) and noting that
hiol® = [Ag(e)|z = G (6-14)

we obtain the general expression for AJ processing gain with one jammer, 3

= 1
gM = (6‘15)

] - —1 Ml
1+N/JGO""‘“ =M




We now consider the simpler but practically

which the gains of the SLC antennas are all equal.

oM in the form

ry = (1 + N/
BM = (1 + N/
where
'm * {ﬁmp ’
Py = {30p H
in which
A Pmp
omp =
and
Gl = Gmm

is tnhe common SLC antenna gain.

~

JG)) ry

-1

JGl) Y]
m,p = 1,2,
m=1,2,..

/(1 + N/JGI)

.
’

Then we can factor r'1

interesting case in

and
M

(6-16)

(6-17)

(6-18)

(6-19)

(6-20)

(6-21)

Note that (6-18) is the form that M takes when the receiver noise

is set equal to zero.




Using (6-10), (6-18) and (6-19) in (6-15), the AJ processing gain

becomes

- 1 (6-22)

0 IS e ,
(1 + N/JGl)(l + N/JGO)

We now consider the further simplifications that arise when the '

correlation coefficient Omp takes the form

= R = R* (6-23)

This form arises in the case of a uniformly spaced linear array of antennas as

shown in Figure 6-1. For this case, LY and oM take the forms




In the appendix it is shown that when the forms (6-24) (6-25) are

Ay A ~ det r

H -1 M+1

p L p = 1 - ————— (6-26)
MM l det "M

so that, using (6-26) in (6-22), we see that

(1 + N/JGl) (1 + N/JGO)

9y = = (6-27)
N (.1. R 1_)+(ﬂ>' o, det ryy
J\6 G/ U/ G & det ry
In the limit of large J/N ratios
det r det r
1im gM = .___,,__'_4_ = . (6-28)
IN+ = | 98t Lyy det ry,
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6.3 CALCULATIONS FOR A LINEAR ARRAY

A linear uniformly spaced SLC array is shown in Figure 6-1. The
antenna locations are numbered 0,1,2,...M corresponding to the main beam and
the M successive SLC antennas, While the antenna spacing along the array is d
units, we note that the projected antenna spacing is d cos e. Let R(x) denote

the correlation coefficient for the received signal fluctuations (for carrier

transmission) for two points in space separated by x units and lying in a

plane perpendicuiar to the direction of propagation. Then we readily see that

®mp = R(d{m-p] cose) = Rm-p (6-29)

Assuming the case of saturated ionospheric scintillations, Wittwer
[6.1] shows that the spatial correlation function R(+) is closely given by
xZ

R(x) = exp - Ig~——- (6-30)

where L9 is a correlation "distance”". The rms value of the angle of arrival
fluctuations o, may be related to %0 by the following equation [Ref. 6.1]

USRI T4

=1 .. _
Oe ?—"—" "0 /7 (6 31) I‘

so that {6-30) may be expressed in the alternate form

R(x) = exp (— [L—% Ue]z) (6-32) ‘
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and Rm takes the form

z) - (6-33)

m

v 2 ud cose
= -m 2 —_—
R exp ( m i g

where

2 w 2 ;
s = exp (_ rff uc)l‘ cose ] - exp (_ Ld cc;se]
~ 8 0 i

(

6-34)

is the correlation coefficient between adjacent antennas.

For the case of large J/N ratios we may use (6-33) in (6-28) to
compute the AJ processing gain for M SLC antennas

(6-35) ﬁ
1

N AR o %50 Y adth gl

e e R




Expressions for Iu for M = 1,2,3 are given below

9 T (6-36)
- 1 - a? - 1
92 S T - 747 F 24° - 24° T ==l - a") (6-37)
- 1 - 2a? + 2a® - a®
93 1 -3a?+ a° + 8a% - 2a¥ - 20’7 - 2aT7+ 4a7™" + of¥ < 3aT? + o7
= 1 (6-38) i
(1 - «)(1 - a*)(1-af} ¥
It appears, but has not been proven that
(1 - a?¥(1 - a*) ... {1-a )

The behavior of Iy for a near 1 is of particular interest because

it describes the onset of degradation. If we let

a = 1 - ¢ (6-40)

' -M
ﬁ 9y -+ ;{%};r for ¢ << 1 (6-41)

From (6~34) we see that

F e = 1-exp(- rd c(:'seAr) (6-42)
! — 0
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When ¢ is small we may use the first two terms in a Taylor expansion of the

exponential in (6-42)
dcose | . [/ 2 ndcose . ]‘ (6-43)
_ 4 A 8

It follows that the approximation (6-41) may be expressed as

{j/~_ xd COS@ J ~2M

M wm ’

9y M= 1,2,3 (6-44)

Figure 6-2 presents plots relating 9 9 and 93 in dB to a “decor
relation" parameter

y = 4 ios 0 . /rﬁ'ng cose (6-45)
. 8

using the exact high J/N ratio expressions (6-36) through (6-38) and the
Gaussian shaped spatial correlation function (6-30). The dashed lines show
the small decorrelation approximation (6-44). Note that these asymptotic
approximations which are straight lines on a log-log plot are a good engineer-
ing approximation for values of the decorrelation parameter y as large as 0,3
to 0.4 .

The improvement in performance with increasing number of antennas
may be understood physically by noting that additional antennas allow the null

to be broadened and thus reduce the impact of the angle of arrival fluctua-

tions,

T it
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" Figure 6-2 _

Jecorrelation Parameter y as a Function
of AJ Processing Gain for 1, 2 and 3

SLC canceller antennas assuming a single
Jjammer and high J/N ratios. Linear
Antenna Array with Uniformly Spaced
Antennas, Gaussian spatial correlation -
functions as:umed. ‘_

M = number of SLC antennas —

Dashed line dengtes small decorrelation —-
approximation: oM

M

The decorrelation parameter
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It is of interest to examine the anomalous case in which the

spatial correlatiton function has the form

R(x) = exp(- -L;%)

and thus
= qIMl
Rm 8
where
8 = exp|- d iose
0
The processing gain is given by the ratio
(~ N —
1 " .. 8M 1
B
det
. gh-1 .es 1
S * ~ _
1 8 e BM
8
det
- BM oo 1 —
78

(6-46)

(6-47)

(6-48)

(6-49)




Note that this result is independent of M in contrast with the previous exam-
ple and in apparent disagreement with our heuristic arguments on the benefits
of more antennas. However, one may argue that the reasoning is not wrong in
this case but ambiguous because the correlation function (6-40) corresponds to
the non-physical case of an infinite value for the rms angle of arrival fluc-
tuations, Clearly no null broadening can counteract an infinite rms angle of

arrival. 3
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SECTION VII

RESULTS FOR THE THREE-DIMENSIONAL SLC ARRAY
WITH MULTIPLE JAMMERS

7.1 INTRODUCTION

This section will formally state the equations that need to be
programmed to compute the processing gain of a specified three~dimensional SLC

array when subjected to L jammers arriving from specified directions.
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7.2 FORMULATION
The antennas are assumed arranged in a uniformly spaced three-

dimensional grid pattern with grids parallel to the x, y, and z axes, Thus

the location of an arbitrarily selected antenna can be specified by a radius
vector

Tmpq = imd, *+ dpd, + kad, (7-1)

where i, j, k are unit vectors along the x, y, and z directions; dx’ dy, and
dZ are the uniform spacing between antenna elements aligned parallel to the x,

Y, and z directions, respectively; and m, p, and q are integers. By letting

the antenna degenerate, a planar and simple linear array can be modeled. Thus
the formulation inciudes the two- and one-dimensional SLC performances as
special cases. We assume that m, p, and q range over the values (-M_, M+),

(-P_, P,) and (-Q_,Q,) respectively.

It is convenient to specify an antenna and its output by the sub-
script mpq. We assume that the main beam antenna is located at the origin of

coordinates. Thus, the output of the main beam antenna is given by

Wooo(t) = S(t) hg gag(t) + 33(t) Ny 5galt) + 3 (E) ) ogp(t) + ngge(t)

while the output of the mpqg antenna is

(t) + ... :3
(t) +

(t) = j;(¢) (t) + J,(t)

"2 .mpg
+ 3 (1)

h
Ympq 1,mpq

mpg(t) (7-2)

AL mpq




where jz(t) is the zth jammer, hz,mpq(t) is the complex time variant gain
characterizing transmission from the zth transmitter location to the mpq
antenna output, and “mpq(t) is the thermal noise component at the mpg antenna
output. Note that we have assumed no signal components in any of the SLC

antenna outputs, i.e,,

hO,mpq = 0 ; mpq # 000 (7-3)
The complex transmission gain hz mpq can be factored into the
following form
jY (9 s$)
= mpqg- UL’ e _
hl’mpq(t) Ampq(ez’¢z) e gz,mpq(t) (7-4)

where ez’°2 are the spherical angular coordinates characterizing the direc-
tion of arrival of the gth jammer, Ampq(e,¢) is the complex antenna gain

pattern of the mpg antenna,

Ympq(eg’°1) is the phase delay of the signal !
arriving at the mpg antenna from the zth jammer relative to the phase delay at 11
the 000 position [y000(92,¢1) is set = 0] and gz,mpq(t) is the complex time-

variant channel gain characterizing the path from the zth jammer to the mpq

antenna,

To simplify the antenna model, a défault option should allow all the SLC
antennas to have the same pattern, i.e.,

Ampq(e,¢) = B(o,¢) ; mpq # 000 (7-5)

while

AOOO(O,O) = A(ﬁ,@) (7°6)




To simplify subsequent notation we assume temporarily that a one-
one mapping has been established between the triplet values

{mpq ; m = 'M_90o- '1,0,1,.-.M+,
p = -P_,'oc -1,0,1,.00P+,
Q, 1}

Q= -Q_,... -1,0,1,...0,

and the integers {(n;n=0,1, ... K} , the triplet corresponding to the integer n

being denoted by m.p We assign n=0 to the triplet 0,0,0 denoting the main

ndn°

beam.

Thus, rewriting Eqs.(7-1) through (7-4),

wo(t) = s(t) hog(t) + 31(8) hyo(8) + wuu v 3 (2) by o(8) + mp(8)  (7-7)

Wo(t) = 3(t) hyo(t) + g, (t) hy () + wow + G (t) by (t) +n (t) (7-8)

hoy =0 5 n#0 (7-9) ‘
Jy (e, 56, ) |

honlt) = Ale,.0) e e 9,0(t) (7-10) i

The SNR in the main beam, i.e., the SNR without adaptation, is

S0 S !

= T (7-11)
ég% Jz GLO + N §

°0

where we have used the notation

2
Gin = | Aloy00) (7-12)




for the nth antenna gain in the direction of the Lth jammer and we have used
the normalization

g 17 =1 (7-13)

The SNR after subtraction of the SLC antenna outputs, i.e., the SNR
after adaptation, is given by

00 (7-14)

[
b
(2]
&
+
=
1
|
o
|

so that the processing gain is given by

L
gjl JyGeg+ N
g = T (7-15)
H -1
:L;] Jy G +N =R CTR
where :
R ={ woiﬁ ; n=1,2,.0.,K1} (7-16) ‘
C={ww ; n,r=1,2,...,K } (7-17)

Using Eqs.(7-7) through (7-10) we can express R and C as sums of matrices each
dependent upon a single jammer (assuming uncorrelated jammers).

L 'jY (0 ’Q)
= ¥* LI A 1 . = )
R ;=21 J, Agle,e,) L A%(s .0,) e WS RS WANNS ! ’.
}
L -3 Cyple,,0,)-v,(8,,8,)] ¥
= * 20777 Yni ¥y ¥y + ,
£ 2;% ¢ Jz Ar(ez’°z) An(ez'°z) € ®anr N6nr ;
s n,r = 1,2,...,K 1} (7-18) ;
4
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where
1 y n=r
§ = (7-19)
nr 0 ;. n#r
and
="ao% a -
Penr Ion Jur (7-20)
th th

is the spatial correlation coefficient between reception at the n~ and r

antennas corresponding to transmission from the position of the zth jammer,

Assuming our interest is in SNR or processing gain we can normalize
both S and Jn to N, i.e., set N=1 in the above expressions and regard Jn as

the Jn/N ratio.

It remains to specify the correlation coefficients ®onr and the

phase delays Yn(ém’°z)’ We will develop expressions for these terms as a

function of the antenna element positions, the arrival angles of the mth

jammer (el,¢£), and a specified perpendicular correlation function R, (x)}. The

1

latter is the spatial correlation function in a plane perpendicular to the

direction of propagation of a received signal.

As discussed earlier, in the computation of the spatial correlation
coefficients, it is sufficient to use modified antenna element positions ob-
tained by projecting the antenna positions on a plane perpendicular to the
direction of propagation of the jammer., Thus if dmnr denotes the distance

th

between the n and rth projected antennas for Lth jammer direction of

arrival,

(7-21)




Then for computation of o it remains only to obtain an expression for dnn

r

nr
once le-) is specified.

Consider now the phase delay term Yn(el’°n)' Assuming that the jam-

mer is in the far 2zone of the antenna yn(e£,¢g) depends only on modified

antenna positions obtained by projecting the actual antenna positions on a
. h . . L

line from the lt jammer to the main beam antenna. Let the position of the

main beam antenna be the origin of coordinates along the line and s, be the !

n
position of the nth projected antenna, then ;
S
- an -

o (8,50.) 20 — (7-22)
where ) is the wavelength,

The distances dznr’szn may be obtained from the antenna positions

.

in the x,y,z coordinate system by means of a rotation of coordinates. Figure 1

shows the relation between the x,y,z coordinate system and the xl,yk,z2 coor-

dinate system. The 2 axis coincides with a line from the origin of x,y,z

system (the main beam antenna location) to the zth jammer, This line has

spherical angular coordinates (e£,¢£). The yl axis is perpendicular to 2* and
in the plane containing the z and zl axes. Since the xg,ym,zl coordinate sys-
tem is an orthogonal system the xayn plane is perpendicular to the 2¥ axis. 1t
follows from our construction that the xlyg coordinates of the antennae are
)

just those of the plane-projected antennas needed to compute dznr while the z

coordinate provides s Specifically if (xﬁ,yﬁ,zﬁ) denote the coordinates of

the nth antenna in the (xi,yl,z

n’
l) coordinate system,
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to Jammer ;

Figure 7-1 Relation Between x,y,z and xz,yl,y2 Coordinate System




= L L2 L Ly ?
dnr = ‘/(kn - xd )+ (yy -y (7-23)

_ ]
Sen ° z, (7-24)

, . L2 _R L
The relationship between (xn,yn,zn) and (xn,yn,zn) is given by

2 .
= - -25
Xn X, Sine, -y, cose, (7-25)
9 . .
= X_COSg COS¢ + cos sin -z sin 7-26
Yn n 06, COSe +y, cose sing -z, sing (7-26)
] . . .
Z' = X_ sin cos¢. + sin Sing + z_ €OS 7-27
n n 8 ¢, * ¥y 8, ¢ n 0, ( )

From (7-1) we note that

X, = m dx (7-28)

Yo = Pp dy (7-29)

z, = 4, dZ (7-30)
th

where m 5P, s is the triplet corresponding to the n~ antenna in our one-one

n
mapping. Using (7-25) through (7-30) in (7-23) and (7-24) we see that

. 2
dz;nr = [_dx(mn-mr) s1n¢l - dy(pn'pr) cos¢;:] !
. ) 12
+ [:dx(mn'mr) cose, COSg + dy(pn'pr) cosp, sing, - dz(qn-qr) s1nel—J |
(7-31) f

- , + \
Szn mndx s1nel COS@I pndys1ne

sin¢L +qpd, cose, (7-32) 3

k|
‘T
%!
e

L
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As discussed earlier, a suitable perpendicular correlation function
is given by

7-33
| (7-33)

where % is a correlation distance parameter. This parameter is related to

9y the rms value of angle of arrival fluctions, by

| A
o S ——— ———

y (7-34)
J2 4 O

The above formulae allow a computation of processing gain for a

three-dimensional array subjected to noise jamming from L independent sources

arriving at angles (ez’°£) ;L =1,2,...L.




SECTION VIII

ERROR RATES WITH A FADING NON-ADAPTIVE SLC ARRAY

8.1 INTRODUCTION

In this section we will develop expressions for the error rate of
modems used in conjunction with an SLC (sidelobe canceller) adaptive array. It
is assumed that saturated jonospheric scintillations nave occurred, causing
the propagation medium to produce complex Gaussian fluctuations on received
signals. It is also assumed that the adaptive array time constants are too
slow to adapt to the fading and that the signal bandwith is narrow enough to
avoid significant frequency selective fading. Thus the performance degrada-
tion suffered by the array is caused by spatial selectivity and non-adaptation
to the fading, The subsequent analysis will be concerned with the error rate
performance of a digital modem connected to the output after the SLC has
attempted to cancel the jamming signals, As in the case of the adaptive
array, two cases may be considered: the modem time constants may or may not
allow adaptation to the fading. In this section we consider the case of 4
fading adaptive modem, In order for adequate error rate performance to result
it is necessary to employ coding, interleaving and forward error correction
techniques. The raw error rates computed here may be used to evaluate the
improvement offered by coding techniques. Section 8.7 presents numerical

results on error for the simplest case - one SLC antenna and one jammer,
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8.2 SYSTEM DESCRIPTION

The system to be analyzed is shown in Figure 8-1, An array of M
auxiliary antennas with adaptive complex weights and a combiner form a side-
lobe canceller (SLC) which by subtraction attempts to cancel the L jamming
signals appearing in the sidelobes of the signal or main beam antenna. The
“cancelled" output is fed both to a digital modem for extraction of the output
data stream and to a device which implements the adaptation algorithm. This
algorithm attempts to set the complex weights Prs Pos eees Py for minimum
output power, However, the adaptation process is assumed to be too slow to

follow the fading.

The combiner output ¢(t) can be expressed as

L
c(t) = s(t) hOO(t) + Egi il(t) ho(t) + nglt)
M L
- n;;l P P 12(t) hlm(t) +n (1) (8-1)

where s(t) is the transmitted signal, {il(t); 2=1,2,...,L} is the set of L

jamming signals, " is the thermal noise in the mth antenna output, and hzm(t)

is a complex time variant multiplier characterizing transmission from the zth

jammer to the mth antenna output., We may rewrite (8-1) in the form

L
c(t) = s(t) ny(t) + Z;

z il(t) hl(t) + n(t) (8-2)
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Modem Data >tream

Figure 8-1  System Block Diagram,




where

M

h () =ho(t) H;Z P Ngm(t) (8-3)
M

n(t) = ng(t) - 2 p mp(t) (8-4)
m=1

hgo(t) = hy(t) (8-5)

Note that im(t) hz(t) is the residual jamming component after cancellation due

to the zthjammer, while n(t) is the output thermal noise.

The transfer functions nzm(t) may be expressed in the form

JYm(ez’°t)

(t) = A(e,.0,) e 94n(t) (8-6)

Nem 2°%

th

where (91’°1) are the angular spherical coordinates of the g jammer,

th

Ym(ez’°z) is the phase delay of the &  received jammer signal arriving at the

mth antenna measured relative to the signal antenna, Am(e,¢) is the far fieid

pattern of the mth

antenna, and gzm(t) is the complex time variant channel
characterizing the path from the zth Jjammer to the mth antenna. The latter

has been normalized so that

l9, (817 = 1 (8-7) i

Lm

and relative phase shifts due to path delay difference have been removed and
incorporated in the phase shifts {ym(e£,¢£) ; m=1,...,M}. When the jammer and
signal transmitters are far enough apart and saturated facing occurs, it may
be assumed that the path gains are statistically independent complex Gaussian

variables,
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The performance of coherent, differentially coherent, and in-
coherent, binary and quaternary modems will be evaluated, In all cases it is
assumed that the error rate for such modems with a non-fading non-jammed

channel may be expressed in the form
P = f(o) (8-8)

where o is the ratio of the energy/bit to the noise power density, We further
assume that prior to detection or decision operations in the modem, the proc-
essing may be characterized as complex linear filtering. The jammers are
assumed to have spectra flat over the bandwidth of this linear filtering and
to have filter outputs characterizable as independent complex Gaussian proc-

esses when channel gains are fixed.

As a cansequence of the above assumptions the modem error rate

conditioned on the channel complex gains is given by

E
- b
?e = f (N;) (8-9)

where Eb is the energy bit and Ne is an equivalent noise power density

L M

Ne = 2: Nz'hmlz + NO 1+ 2: |pm|2 (8-10)
=1 m=1

in which Nz is the one-sided power spectral density of the real zth jamming
process in the vicinity of the signal carrier frequency, and NO is the common
one-sided power spectral density of the real thermal noises at the antenna

outputs, Eb may be expressed in the form
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R

;
1 A —
£, = 75_(‘)' TST(EIT dt nyl2 = 3¢ Thol® (8-11)

where S is the transmitted power, T is the symbol duration, and b is the

number of bits/symbol.

We define
ST S TW
S © z'b'N‘O‘“‘ol2 = § 2 INol? (8-12)
}

as the average signal energy,/bit/thermal noise power density in the main beam
(W is the receiver bandwith and N is the thermal noise power)., and

NTh |2 J ‘
Y R - TR f

as the ratio of the output jammer power due to the nth Jammer to the thermal

th jammer transmitter power, Equivalently, n, is

noise power where J2 is the 2 %

the ratio of average received jammer power density to thermal noise for the

zth jammer. With these definitions
sglzgl?
0'40 .
o = T (8-14) ,
> onfz j*+p /
s B A ;
where
M .
b= 1+ 2yl (8-15) ;
=1 :
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-

and we have defined the normalized variables
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8.3 ERROR RATE ANALYSIS FOR A SINGLE JAMMER:
INDEPENDENTLY FLUCTUATING SIGNAL AND JAMMER CHANNELS

The modem error rate may be evaluated by averaging the conditional
error rate (with the channel gains frozen) over the channel fluctuations,
i.e.,

Poo= [ fe) W(p) do (8-17)
0
where W(p) is the probability density function of o in Eq.(8-15). We consider

now the evaluation of W(p).

W(x) may be obtained as the derivative of the probability distribu-

tion function

Mx) =S F(x) (8-18)

where

F(x) (8-19)

H
-
-

—
©
A
x
~—

Using (8-15),
L
Pr(e < x) = Pr(sglzgl® - x 2 nylz,1* < px) (8-20)
2=1

We consider in this section the use of a single jammer and inde-
pendent fluctuations for the signal and jammer channels, i.e., h0 and h1 are
assumed statistically independent. When the jammer and communicator are
separated sufficiently, the statistical independence will be valid. In this

case we need tc compute the canonic probability

L A ot

T TS AR NPT~ -rrirs 3 Py ot

t
|




(8-21)

Pr(g < Q) = Prirg-ry<Q)

where
Fe = bw 1 : k=0,1 (8-22)
and {uk ; k=0,1} are indzpendent complex Gaussian variables. The probability

density function of a is given by

I r. . s
wk(r) = 3 exp( - 3 ) U(s) . k=0,1 (8-23)
K k
where
3, = Ce = Iuk|’ (8-24)
and
1 ; r>0
y{r) = (8-25)
0 ; r< 0

The density function of g is just the convolution of the density

function of ro with that of -r1 or

w(a) = [ug(s) Wy(s-a) ds (8-26)
Carrying out (8-26),
-q/ao
‘?—'———— s q >0
3 * 4
(8-27)




Q
Pria<Q = J W) dg
we find that
\ eQ/a1
1
; Q<0
9ty
Pr(q < Q) =
-Q/a
a, e 0
1 - 5 Q>0
a, +a
Upon identifying (for L=1)
3 = S
a, = xn (n1 =z n)
Q = px
in (8-29), we see that
S -px/s
i} .0 0
F(x) Pr(p < x) =1 T e ; x>0

or, defining the ratios
P -

R = n/s0

P/s0

(8-28)

(8-29)

(8-30)
(8-31)

(8-32)

(8-33)

(8-34)

(8-35)




The density function of P is obtained by differentiating (8-36)
[see (8-18)],

W(x) = LTTE')'(R'+(TTBTR)2] e-Px ; x>0 (8-37)

Using (8-17), the following integral yields the error probability for the

single jammer case:

Py = ff(") [1 +PDR+ (T‘TRTﬁ)zj e 4o (8-36) '1

An alternate expression, which is sometimes more convenient, may be

obtained from (8-38) by integrating by parts,

R I T P
0

The following represent well-known expressions for f(°),

f(p) = 7 exp (- 3? ; incoherent FSK {8-40)
1 _-° .
f(e) = 5e ; binary and quaternary DPSK  (8-41) i
]
Py = X . - !
f(e) = Q(v2°) ; bimary and quaternary PSK (8-42)
f(P) = Q(77P) ; binary coherent FSK (8-43) :
!

where FSK, DPSK, and PSK denote binary frequency shift keying, differential
phase shift keying, and phase shift keying, respectively, and |
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et 2
Q(2° ) = L2 gy (8-44)
2
V20
Noting that
%-exp (- %0 ;  incoherent FSK (8-45) |
-f(o) =
1
5 exp (-0) ; binary and quaternary DPSK  (8-46)
S exp(-P) ; binary and quaternary PSK  (8-47)
Zo /Zx
-f(p) = 1 1
—— — exp(- %0 ; binary coherent FSK (8-48)
2’0 /2w

and using (8-47) in (8-39), we find that

1 1 1 P
P = ~—— exp(-~p) [1-————9 ‘]do 8-49
e /z—f/z—o P T+ S _ (8-49)
0

Using the change of variable y = v2p,

p = f—l—exp(-lg-) l-m-}i/—é-exp(-Py'/Z) dy  (8-50)

o "¢" h -

o

The first term may be integrated, yielding

dy (8-51)

C D iR, |




Upon the change of variable y/R/2 + z

~ P
) Tf ] exp ( -(-1% )z?)
b, = 3 - \Ai — o dz ; PSK (8-52)
0

More generally, since (see page 314 of Ref.[8.1])

f L) g - et QU (8-53)
0

+X

we see that

)
R Q( 2(12) > . PSK (8-54)

Using the asymptotic expansion

Q(x) = _l_e-xz/Z [—1 - )1(_2_+ 1 . l (8-55)

/7% xv

we deduce the approximations

1 1 R - .
P+ 1- — (1 - ) ; R << 1+P
e 2 [: /T:F 211+P5 —J
(8-56)
» B%B © R<<1, P <<l
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In an exactly analogous procedure, using (8-48) in (8-39) we find

that

_1+2p
Py = _% - \/%R e R g liég) ;  coherent FSK (8-57)

We now consider binary and quaternary DPSK and insert (8-46) in
(8-39), resulting in the integral

o

- 1 -p 1 -Pp
Pe —f 5 e [1-—-——1+0Re ] de (8-58)

0

This integral can be expressed in terms of the exponential integral ‘

function
S <
£, (x) = e at (8-59)
0
as
A +P
p = 1 [1-¢ RE(l‘fﬂ) - DPSK (8-60)
e 7 |- &K ;

With the 3 dB difference for incoherent FSK

1+2P

2R El(l%%g) ; incoherent FSK (8-61)

n

1 1
Pe 7\l-7re




we find that

(8-63)
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8.4 ERROR RATE ANALYSIS FOR MULTIPLE JAMMERS:
INDEPENDENT FLUCTUATING SIGNAL AND JAMMER CHANNELS

In this section we consider the evaluation of error rate for multi-
ple jammers. Equations (8-17) through (8-20) are applicable to the multiple
jammer case, Computation of (8-20) requires an evaluation of a probability of

the generic form,

L
H(Q) = Pr(r, - 2% r, Q) (8-64)
l:

where

= 2 . =
re = Iugl ; m=2,1,... M (8-65)

and My is a complex Gaussian random variable, In this section we shall

assume that the jammers and communicator are mutually separated far enough
apart that the set (hz(t) ; 2=0,1,...L} are statistically independent. Then

the set {”z ; 2=0,1,...L} may be taken as statistically independent.

We shall first find the p.d.f. (probability density function) of

L
1= - r 8-66
0 5;% L ( )

by transforming its c.f, {characteristic function), This is, if

c(s) = 39 = fu(q) e dq (8-67)

is the c.f, of q (we have generalized to a complex argument s), then the

p.d.f, of q is given by
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W(q) = 2%3- J/”C(s) eS9 ds (8-68)
_J'cn

Equations (8-67) and (8-68) are two-sided Laplace transform pairs. The
integral in (8-68) is a contour integral closed around the left half plane for

g > 0 and around the right half plane for q < 0.

Because of the assumed independence of the set {rl}, the c.f, of g

factors as follows

(8-69)

"
1]

1

[}
=}

P

w
—
jam [ g
o
™

—

'

w
—_

C(s)

where

-sr
Cz(s) = e s & =0,1,...L (8-70)

is the c.f. of r,. This c.f. is given by [see (8-23) and (8-24)]

L 2

- 1 )
Cl(s)=f esxa—Aexp(--a—x)dx :




P s i i gt e ik K i

Thus using (8-71) in (8-69)

KN L -l/a, )
U IR, (s- 3 (8-72)

0 2= L

We desire H(Q), (8-64), which is the d.f. (distribution function)
of g since from this d.f, the d.f. of o, F(x), Egs.(8-19) and (8-20), may be

trivially determined and thereby the desired error rate via the integral

e

P =/ F(e) (-f(o)) do (8-73)
0

where f(p) is given by Eqs. (8-39) through (8-48).

We may obtain a contour integral representation of H(Q) as follows

Q iz
H(Q) = f W(g) dq = pir (f%s’— &4 ds (8-74)
- _Jm

where in carrying out this integration the path of integration along the j

axis is indented to the right of the pole at the origin and the contour closes

in a large semi-circle in the left half plane.

Since the counter includes only the poles at s = -1/a0 and s = 0,

from Cauchy's residue theorem,

H(Q) = Res{%él eSQ) + Res{%-il eSQ} (8-75)
=‘1/ao s=0 .
or
L
a -Q/a
H(Q) = 1-<n 3+—g)e O 5 a0 (8-76)
g=1 0 "2
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Upon making the identifications

ag = xn, 3 t=1,2,...L {8-78)
Q = px (8-79)

we see from (8-20), (8-64) and (8-65) [note that lqllz = 1], that

L
Flx) = 1‘(H TTLW;‘) i (8-80)
=1

where P is given by {8-34) and

RE = nl/SO (8-81})

The error rate is thus given by the following integral for binary and

quaternary DPSK

~ L
- 1 _ 1 1 -(P+1)x _
Po 5 5 f(n T3 le)e dx (8-82)
o el
and by the integral
b ) j‘1 1 (ILI L \e-(Pex (8-83)
= 1. - -
e 2 IR\ TR,
5 =

for binary and quaternary PSK, The minor modifications for coherent and

incoherent FSK are evident,
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8.5 ERROR RATE ANALYSIS FOR MULTIPLE JAMMERS:
CORRELATED JAMMER CHANNELS ONLY

In this section we generalize the previous analysis to the case in

which the fading on the various jammer channels is correlated but the signal
channel is still uncorrelated with the jammer channels. First, we wish to
compute H(Q), the d.f., of the random variable q [see Eqs.(8-64) - (8-66)].
This d.f. may be computed from (8-74) once the c.f. C(s) is known. Under the j
assumption that the signal channel fluctuations are independent of the jammer

Channels' fluctuations, C(s) factors into the product

C(s) L= (8-84)

1]
(1]
.
o

The first average has already been computed [see Eq.(7.51)]. We
consider the evaluation of the second average which is the c.f. of the random

variable
S r- %
d = r, = fu 2 (8-85)
=1 . g=1 L

Comparing Eq.(8-20) with Eqs.(8-64) and (8-65) we can make the identification ;

My = Z, 7xn (8-86)




The random variable d is a quadratic form in correlated complex

Zero mean Gaussian variables, Turin [8.1] has evaluated the characteristic

function of a quadratic form in complex Gaussian variables,

H
¢ = 2z Qz (8-88)

as

_ -sd  _ 1
¢(s) = e A A (8-89)

where Q is the matrix defining the quadratic form and M is the moment matrix

of the random variables. In our case Q is the diagonal matrix

g E _N. (8-90)
where
n 0 cen 0
0 n2 cas 0
-’i = (8-91)
. . 0
0 0 n
L L —
and
M = z;zn ; &,n=1,2,...L1} (8-92)
so that
#(s) = . (8-93)
detl T+ sMNTJ
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Using (8-89) and (8-71) in (8-84)

l/aU 1

Cs) =5 17a, det[ T - sx MN] (8-94)

The d.f. H(Q) is thus given by (see (8-74)) the contour integral

‘ 1/a

‘ HQ) = 1 0 1

2nj s+ 1/a; det[ I - sx MN]
: _jm

1

It will be shown below that the poles of the second factor in (8-74) are all

in the right half plane. Thus, using Cauchy's residue theorem,

1 "Q/ao
H{(Q) = 1 - % e (8-96)
det [ I + T MN ]
- 0

Using the definition (8-32), (8-34), and (3-81),

_ 1 -Px 7
F(x) = 1~ Tet T T+ x ﬂ.Bﬁjﬁ e (8-97) ‘
where
Rl 0 0
0 R2 ese 0
R = (8’98)
. ‘. 0]
0 0 RL
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A single integral expression for Pe is obtained by substituting (8-97) in

(8-73) and using the appropriate expressions for (-f(p)). Thus

P = 1 1 f e-(Pﬂ)x dx - binary and (8-99)
e 2 2 det [1 + xM R] ’ quaternary DPSK
0
1 1 1 e-(PH)x binary and
P = = = dx N K (8-100)
e 2 /7w /7% det [+ xMR] quaternary DPS
0

Alternatively we note that the denominator of (8-93) is an Lth

order polynomial in sx and may be factored to explicitly show the poles of
¢(s). If the eigenvalues of the matrix product M N are denoted by (rg5251,2,

.+.L} then

L
det {1 + xM N] = nl (1 - sxrp) (8-101)
L=

Due to the positive definite nature of M N, all the eigenvalues are positive
numbers and thus the poles of ¢(s) are in the right half plane. Using (8-101)

in (8-94) we arrive at the following expression for the c.f. of g

l/a, L - xa
) = svE L \smm (8-102)

which is identical to the form (8-72) in the case of independently fluctuating

jammer channels,
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It follows that the d.f. H(Q) is given by an analogous equation to

(8-76)
L a - N/a
HQ) = 1- I —2o e O (8-103)
2=] ao + X ]

Then using (8-77) and (8-79), the c.f. of % becomes

L
F(X) = 1 - (Hl T—;l—X?—) e-Px (8'104)
= L

where

S, = A,/9 (8-105)

Finally, the error rate expressions are identical to (8-82) and

(8-83) with the replacement Sg=Rye
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8.6 [ERROR RATE ANALYSIS FOR MULTIPLE JAMMERS:
GENERAL CORRELATED CHANNEL CASE

We consider here the genera) case of mutually correlated communi-
cator and jammer channels. The d.f. H(Q) can be computed from the c.f. C(s)
via (8-74). We may use the results of Turin [8.1] again to compute C(s),

since the latter is the c.f. of a quadratic form in complex Gaussian vari-

ables, i.e.,

L
o B
C(s) = e 2=l

(8-106)
From (8-88) and (8-89) we see that
¢s) - FE T (8-107)
where now '
M = {z*z_; t,n =0,1,2,...L} (8-108)

and Q is the diagonal matrix
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From (8-74) we see that

sQ
- e -
HQ) = ) Res gs T (8-110)
left half plane

where the pole at the origin is included in the left half plane by indenta-
tion. In the case of no correlation between the signal and jammer channels
there was only one pole in the left half plane aside from the pole at the
origin. It is not known at this point if this type of pole configuration will
stay the same for arbitrary correlation. However, for small correlation at

least, one may expect only one left half plane pole., If this pole is denoted

by

s = -1/¢ (8-111)

then, from (8-110),

-Q/a
HQ) = 1 - ;%iri-"l—gﬂ—ms (8-112)

s = -1/0
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£=0,1,...,L} with

Alternatively if the eigenvalues of M Q are {x ;
A=
0=%s then

A

: - e‘Q/U(X) (8-113)

HQ) = 1 -

L

where we have shown explicitly the dependence of ¢ and A, on x.

It follows from (8-79) that the d.f. of p can be taken as either of
the two equations:

L
- X -px/a(x) .
F(x) = 1- 2r=11 o s mok (8-114)
_ 1 + so(x) -px/o(x) _
F(x) = 1- fdet Trsmay °© (8-115)
s = -1/0(x)

A single integral expression for Pe is obtained by using either
[ ]
(8-114) or (8-115) in (8-73), with appropriate specification of (-f(e)) for

the modem of interest.

We will now examine the case of a single jammer in more detail. In

this case
[~ -
1 o1
Moo= (8-116)
*
L rO]’ 1 p——
r- _
s0 0
Q = (8-117)
0 -xnl
L -
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Simplifying the notation by the definitions

fop = T (8-118)
np = n (8-119)
we find that
1+ss0 -sxnr
P(s) = det {1+ sg.gj = det (8-120)
sr*s0 1-sxn
or
P(s) = -xnsg(l - Irl®) s* + s(sy - xn) +1
= (1 + so)(1 - si) (8-121)
where

2xn50(1 - irl?®
o = >0 (8-122)

\/(s0 - Xxn)* + 4xnso(1:TF|77 - (00 - xn)

2xns (1 - iri?)
A= > U (8-123)

Vﬂgb - xn)* + 4xn50(1:TF]{7 + (sO - xn)

Using (8-122) and (8-123) in (8-114),

SO- xn

Fix) = 1-3{1+ ePX/o(x) (8-124)

1/(50 + xn)? - 4xnsofrlz

R R SO WS




With the definitions P and R in (8-34) and (8-35),

P 1 - xR V(1+xR)* = rRxIrl™ -(1-xR)
F(X) 1 2 1+ exp -P Zm_lr[z)

VI + xR} - aRxTrT*

(8-125)
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8.7 SOME EXAMPLES

For purposes of illustration we present some numerical results for
the simplest case - a single jammer and a single auxiliary antenna. We exam-

ine the case of PSK transmission. From Eq.(4-24) the error rate is given by

(1P

_ )
P, = 2-4fT e R o‘/z@;—*’) (8-126)

e

To evaluate Pe it is necessary to determine P and R. For the case of one

antenna and one jammer, these are given by (see Egs. (4-4),(4-5),(3-4) and

(3-6)

1+ |p1|2
P = — (8-127)
0
Jl lhII’
R = — (8-128)
N 50

where P is the optimum complex weight, So is the value of average energy/bit
/noise power density for the received signal, N is the thermal noise power of
the main and auxiliary antenna outputs and Jl 1S the transmittted jamming
power, hl(t) is the complex gain of the residual channel from the jammer to

the canceller output, (Eq. (2-3))
hl(t) = hlo(t) - pyhyp(t) (8-129)

in which hlo(t), hll(t) are the jammer to main and auxiliary antenna channe)

complex gains (Eq.(2-6)) respectively.
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The optimum weight is obtained from equations in Section 3, For

the single weight case we find that

p, - (8-130)

1+ N (8-131)

Using the definitions

G, = |A1(el,ol)|’ (8-133)
P = 909 (8-134)

for the antenna gains in the direction of the jammer and using Eq.(8-131) and
(8-132)

G1gG1q fol® Jg N
T = Gy - cremea il UR vy (8-135)

4. 3N,

- i, i

e
¥

[
1




Three parameters of interest are t

_°nY
B o= St (8-136)
G
10
Yy = {8-137)
5%
8§ = 1- |o)? (8-138)

where B is the ratio of the received jammer power to thermal noise power in
the auxiliary antenna output, y is the ratio of the main beam antenna gain to
the auxiliary antenna gain in the direction of the jammer, and 6§ is a

decorrelation parameter,

Using these parameter definitions in (8-135) and (8-128) we find
that

Y (B)(B+2

S rS| (1 + 8p) (8-139)

Also using these parameter definitions and (8-132) through (8-133) in (8-130)

and (8-127) we see that

1 B \? N
P = 5 [:1 + 55 Y(l-ﬁ)_J (8-140)

There are now four parameters that define the performance of the system: S0
§, v, and B,

?
The decorrelation parameter 6 is related to ¢ in Eq. (6-42) by & = 2e+e? =~ 2¢
and to y in Eq. (6-45) by § ~ 2y?.
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Some limiting cases are of interest, Consider first the case of no

decorrelation, 6 = 0, then

_ oy (B)(842) ) _
e (53 ;ov=0 (8-141)
o
P o= {_1 + y(5E) _| . y=0 (8-142)
0 -

Assume also a large jammer, i.e., 8 >> 1, then

R o+ = (8-143)
0
I ls+ X (8-144)
0
s, + 1 + v
1+0D 0
R T (8-145)

Typical values of v are of the order of 1 or less so that at large

SNR's (1+P)/R is a large number. Thus from Eq.(4-27)

R 1+ 2v . ,
Pe —Ega-m— 3 B> 1, 59 >> 1 (8-146)

The advisability of keeping vy small is evident from (8-146), the smaller «
yields the smaller error rate. It is also evident that with G=0 and y small,

the jammer is effectively cancelled and the same performance is achieved as

with no jammer.




S ) ﬁ"‘

Consider now the limiting case 6=1, complete decorrelation. Then,

R - ?ﬂ 8 ; B> 1, 6 =1

0 (8-147)
p = S—l 5 § =1

0

To the extent that YB/s0 is still a small number and So is larger, we may

still use the approximation in Eq.(4-6),

. 1+ 8
Py e (8-148)

Now we see that the jammer can increase the error rate considerably, Under
the condition ¢ = 1, the auxiliary antenna gain goes to zero (p1=0) and no

sidelobe cancellation is possible.

Figure 8.2 presents a representative calculation of error rate as a
function of & for B=1000, Y=1 with a family parameter sO=3n dB, n=1,2,...9.
Note the rapid degradation in error rates with § at the high SNR's, Typically

3 dB of degradation sets in when & increases from 0 to .003 .
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APPENDIX

PROOF OF A MATRIX IDENTITY

We shall prove a matrix identity that was useful in the text, Given

a symmetric matrix ‘a
i

= {p ; mep = 1,2,...,M ) (A-1)

of the form

= * = -
°mp ppm Rm-p (A-2)

i.e., Hermitian symmetric with the property that a matrix element depends for
its value only on the difference between its indices, then the following

matrix property is valid,

el o 2 1o éet il (A-3)
M -M M det [M
To prove (A-3) we note first that ry, . can be partitioned in the ;
form ;
- . T '
! P gy :
£'M+1 = ooooo.couoo.fooo--co---o (A-4) :
* .
LY : In
where we have normalized
R = ] (A=5)
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The determinant of Tyl is equal to the sum of the products of the

elements of any single row, such as the first row, by their cofactors. If the

cofactors of the first row of Ty+p 2T denoted by [All’AIZ""Al,M+1]’ then we
see that
A11 = det N (A-6) 11
A = (—1)1+m det x C C C C o 3 <m< M-1 (A-7)
1m EM 21ttt -2 tm ot M| |
Ap = det | o G gM_l (A-8)
PN | 17 . _
. th . .
where gp is the p~" column vector in Iy i.ee,
L = N R Y _l (A-10)

Note that the matrix in (A-7) differs from that in (A-8) in that 1

the mth column of rM has been removed and a new first column pi inserted. If :

two columns of a matrix are interchanged, the determinant of the new matrix is ;i

the negative of the determinant of the original matrix. Thus Alm can be ex-

pressed in the alternate form :1
|




Alm = - det [;91’ Coees Co o 2y Cpy - £M4:] ; 3<m<M (A-11)
Al,m+1 = - det [_;4’ Cyeno EM-I’gﬁ _J (A-12)

where we have interchanged the first column in (A-7) with the second column,

and then the second column with the third, etc., until p* interchanges posi-

2y
tion with Em-Z’ i.e., m-2 interchanges for a factor of (-l)m-z.
If we define the vector
[ A2
B - -713 (A-13)
AL e

and evaluate the determinant of r

Tyl by use of the cofactors of the first row,

it follows that

(A-14)

Examination of the structure of { Alm ; m=2,...,M*1 } reminds one
immediately of a rule for the solution of a set of linear equations, In par-

ticular, consider the equation for the unknown vector x:

X = 8§ (A-15)

The solution for x is given by

-1 o*

X = Iy &y




We denote xp as the pth component of x,

x = (A-17)

The solution for X5 is given by

*
det _ﬁﬁ’ Cos e gp_l > Py Ep+1 eee Oy B
p det ™ (A-18)

Comparison of (A-11) and (A-13) with (A-17) and (A-18) shows that

T _ T - H -1
B = x det r, = pyry det ry (A-19)

where we have used the fact that M is Hermitian symmetric,

Then, using (A-19) and (A-14) and dividing the equation by det "

we obtain Eq.(A-3).
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